量化专题 | 构建大类资产的宏观胜率评分卡:货币、信用、增长、通胀与海外五因子

admin1年前研报692


  核心提要  

从资产配置到策略配置。2011年以后,A股和中债的风险溢价明显降低,且股债牛熊波动较大,这导致风险平价策略在中国市场效果不佳。我们需要将传统的资产配置思路转变为策略配置思路,通过策略将低夏普的资产转化为高夏普的资产。本文主要聚焦Beta策略,即基于赔率和胜率两个维度刻画资产在时间序列上的状态,在合适的时点承担风险,从而改善资产的收益风险特征。

赔率雷达图的设计:A股、转债、利率债。赔率是左侧信号,赚的是定价误差的钱,因此赔率的偏离幅度越大,赔率均值回归的速度越快,赔率策略越容易赚钱。权益赔率指标建议使用股息率-国债收益率,可转债赔率指标建议使用CCB模型定价误差,利率债赔率指标建议使用预期收益差。基于赔率理念构建的赔率增强型策略自2011年以来能够长期获得较好的表现,年化收益达6.4%,最大回撤为3.2%,卡玛比率达1.96。

宏观胜率评分卡的设计:货币、信用、经济、通胀和海外。胜率指标是右侧信号,赚的是基本面动量的钱,因此胜率信号的信噪比越高,胜率策略越容易赚钱。我们从货币、信用、经济、通胀和海外五个宏观维度出发,量化定义了每一个维度的方向和强度,最终合成出各大类资产的宏观胜率。基于宏观胜率构建的胜率增强型策略自2011年以来能够稳定获得较好的表现,年化收益达6.3%,最大回撤为2.8%,卡玛比率达2.27。

基于赔率-胜率的四种投资机会特征分析。1)积极把握“高赔率+高胜率”:赔率胜率兼具状态下的资产收益风险特征明显改善,建议集中仓位操作;2)不应错过“低赔率+高胜率”:从历史统计来看,“低赔率+高胜率”的机会同样显示出优秀的收益风险特征,因此有高胜率支持的情况下无须因为低赔率而过早降低仓位;3)谨慎参与“高赔率+低胜率”:高赔率+低胜率的品种要么是持续阴跌的行情,要么是短期暴跌的行情,因此如果想参与“高赔率+低胜率”的机会建议投资者尽可能提高组合的分散化程度。

赔率-胜率复合策略优于单一赔率/胜率策略。相比于纯赔率策略或者纯胜率策略,基于赔率-胜率复合框架的股票择时、国债择时和资产配置策略均表现出更优的收益风险特征。基于赔率-胜率复合框架构建的资产配置策略自2011年以来年化收益达6.7%,最大回撤为2.8%,相比于纯赔率策略/纯胜率策略而言,收益更高、波动更小、回撤更小。



01

 引言:从资产配置到策略配置




当我们谈及大类资产配置的时候,第一时间映入脑海的常常是海外市场的成熟策略或产品,如桥水的全天候策略基金,但这些资产配置理论在中国市场似乎有些水土不服,并没有诞生出类似桥水全天候基金这样的极具市场影响力的绝对收益产品。因此在本文引言部分,我们尝试探讨以下三个问题:

  • 为何风险平价在中国市场效果不理想?

  • 什么样的资产配置理念更适合中国市场?

  • 如何构建具有本土特色的战术配置框架?


① 为什么在中国市场中使用风险平价策略的效果不理想?经典的金融市场假设一般认为,长期来看如果一个资产承担了更高的风险则需要提供更高的回报作为风险补偿,即学术中的“风险溢价”概念。但2011年以后的A股和中债的风险溢价能力出现了较明显的下滑,我们认为这种低风险溢价的现象或许便是风险平价策略在中国市场表现差强人意的核心原因之一。


② 相对于资产配置,策略配置的理念更适合中国市场。策略配置的本质是通过策略将低夏普资产转化为高夏普资产,在市场有效性较低的情况下,我们则需要对资产进行一定程度的“过滤”,将低夏普比率的资产转化为合理甚至是高夏普比率的资产后再进行配置,我们将这个过程称之为策略配置。


③ 资产配置中的Beta管理框架:赔率+胜率。赔率和胜率两个维度各有优劣且相互补充,我们可通过赔率和胜率将资产切割成不同的状态和阶段,不同的状态下资产也将呈现出不同的收益分布特征。因此与其说我们在配置资产,不如说我们在配置资产在时间序列中的某种状态,而这也正是我们本篇报告的核心思路,具体不同资产的赔率和胜率的设计我们将在正文部分详细展开。


④ 相比于2020年的专题报告《资产配置的四种范式:赔率、胜率、趋势和拥挤度》,本篇报告的迭代主要体现在以下三点:
  • 聚焦赔率和胜率,弱化趋势和拥挤度:基于国内大类资产宽度有限、资产配置投资者调仓频率天然较低、而且过于强势的Beta策略将压缩Alpha策略的空间等原因,我们认为中国市场的资产配置过程中应更多聚焦赔率和胜率两个核心指标;

  • 胜率部分有大迭代:本文从货币、信用、增长、通胀和海外五个因素出发,综合了宏观动量和宏观超预期两个维度的信息,构建了对股债商均有效的宏观胜率评分卡;

  • 赔率部分有小迭代:比如股票的赔率指标我们将其覆盖到美股,可转债的估值中枢我们用更精准的CCB模型进行定价等;



02

 宏观胜率中的方向和强度




事实上,我们对大类资产配置中“胜率概念”的思考并非是一蹴而就的,宏观胜率评分卡的设计理念在过去的三篇专题报告中逐渐成型:


因此,我们按照上述的三个研究成果初步确立了宏观胜率评分卡的设计理念:
  • 五个维度:只从货币、信用、增长、通胀和海外五个维度出发设计信号,为了降低数据挖掘和过度拟合的可能性,其他宏观维度暂且不作考虑;
  • 两个信号:每个维度尽可能包含两个信号,一个是宏观维度的方向信号,一个是宏观维度的强度信号,在不纳入新宏观维度的前提下尽可能丰富宏观信息的层次;



03

 赔率-胜率分析框架与策略应用




3.1 资产配置中的赔率策略

在2020年9月外发的专题报告《资产配置的四种范式:赔率、胜率、趋势与拥挤度》中,我们已经详细阐述了各大类资产的赔率定义,因此在此处我们不再详细的展开,仅作简单的复述以及数据跟踪。


① 权益资产赔率指标:股息率-国债收益率。这个指标最早受启发于美联储模型(FED model),即以ERP(市盈率倒数-国债收益率)作为股债性价比的衡量指标。但根据我们的研究,采用ERP作为权益资产的赔率指标有一定的局限性,以DRP(股息率-国债收益率)作为赔率指标逻辑和效果均更好。

DRP指标的主要挑战在于指数需要具备较强的类长久期债属性,即高确定性+高股息率,从而避免价值陷阱和成长不确定性。因此上证50、沪深300、中证500等宽基指数更适合DRP估值法,而中证1000、国证2000等小盘指数不适合DRP估值法。


② 利率债的赔率指标:预期收益。在专题报告《大类资产定价系列之二:利率债收益预测框架》中,我们曾介绍利率债的收益分解模型,将利率债收益分解为三个部分:远期利率、久期影响和凸性偏差三项,并通过改进后的CIR模型对未来一年的Δr进行预测,从而得到不同期限利率债的预期收益序列。


预期收益模型的主要挑战在于利率中枢发生“瞬时且持久”的飘移,这将导致模型中的利率中枢μ估算出现较大的偏差(如2020年-2022年),因此后续模型的改进也依赖于能否更合理和更及时地估算出真实利率中枢μ。


③ 可转债的赔率指标:CCB模型定价误差。在专题报告《可转债定价模型与应用》中,我们将可转债的赎回条款纳入定价过程,构建了CCB定价模型,其优势主要有二:1)相比于蒙特卡洛模拟定价,CCB模型存在解析解,求解速度有明显优势;2)相比于BS公式,CCB模型对中国市场的可转债定价误差更低,尤其是对平衡和偏股型转债。


CCB模型的主要挑战在于对可转债赎回概率的估算,在不同的市场环境中,上市公司对于可转债的赎回意愿也会发生改变,从而导致CCB模型出现持续的定价偏差。


④ 资产配置中的赔率策略。单一资产的赔率指标设计如上所述,基于赔率理念构建的赔率增强型策略自2011年以来能够长期获得较好的表现,年化收益达6.4%,最大回撤为3.2%,卡玛比率达1.96,策略年化单边换手率为90%


3.2 资产配置中的胜率策略

① 宏观胜率评分卡的设计。我们从货币、信用、增长、通胀和海外五个因素出发,并综合了“方向”和“强度”的信息总共构建了10个宏观分项指标,那么落实到大类资产的综合打分中我们该如何统筹这些信息呢?宏观胜率评分卡构建可以分为三步:
  • 宏观符号约束:我们认为五个宏观因素对大类资产的影响方向应该是基于“金融逻辑”而非基于“统计逻辑”,比如增长维度中的增长上行和增长超预期对股票的影响应该是正向的,对债券的影响应该是反向的,因此我们根据金融逻辑对宏观因素对大类资产的影响方向进行先验性的约束;

  • 宏观信号打分:根据我们对宏观指标的定义,并结合每一个宏观指标的数据披露时间,我们构建了日频的宏观信号矩阵,再根据宏观符号约束进行方向调整,则每个资产均可得日频数据颗粒度的10个宏观信号打分序列(只有-1/0/+1三个得分);

  • 构建扩散指数:基于每一个资产的10个宏观信号打分序列,通过扩散指数的方式进行最终的信号汇总,即可得各个资产的综合宏观胜率;


② 权益资产的宏观胜率评分。在图表43中,我们构建了国内股票(沪深300指数)的综合宏观胜率得分,并基于此构建了简单的股票择时策略。择时策略年化收益为12.8%,最大回撤为17.9%,年化单边换手率为3.6倍,而同期沪深300指数年化收益为4.0%,最大回撤为46.1%,基于宏观胜率的权益择时策略能够明显改善国内权益资产的收益风险特征。


③ 利率债的宏观胜率评分。同理,在图表44中我们构建了国内利率债的综合宏观胜率得分,并基于此构建了简单的利率债久期择时策略。择时策略年化收益为4.6%,最大回撤为2.0%,年化单边换手率为4.3倍,同期7-10年期国债指数年化收益为3.8%,最大回撤为8.0%,1-3年期国债指数年化收益为3.2%,最大回撤为2.0%。基于宏观胜率的利率债久期择时策略相比于短久期债券可以显著提升收益,相比于长久期债券则可以显著改善回撤。


④ 资产配置中的宏观胜率策略。胜率策略与赔率策略除了在风险预算和调仓频率上有区别外,其他参数完全一样。基于宏观胜率构建的胜率增强型策略自2011年以来能够长期获得较好的表现,年化收益达6.3%,最大回撤为2.8%,卡玛比率达2.27,策略年化单边换手率为154%


3.3 赔率-胜率分析框架初探

在报告的最后,我们尝试初步融合赔率和胜率的信息,基于赔率-胜率框架对国内股债资产进行系统性的状态判断和分析。在图表46-图表49中,我们对处于不同状态下的资产进行分析,可得以下三点结论:
  • 积极把握“高赔率+高胜率”的机会:高赔率+高胜率状态在中国股债市场中其实并非特别罕见(股票37%和债券24%的时间均为此状态),且赔率胜率兼具状态下的股债相比于正常状态可以获得更高的收益、更高的胜率和盈亏比以及更低的风险;

  • 不应错过“低赔率+高胜率”的机会:很多投资者会担忧低赔率+高胜率的机会是不是无异于火中取栗,但从股债的历史统计来看,低赔率+高胜率的机会却显示出优秀的收益风险特征(股票在此状态甚至表现强于高赔率+高胜率状态);

  • 谨慎参与“高赔率+低胜率”的机会:从股债的收益统计结果来看,此状态下资产体现出几点特征:1)收益较低,意味着抄底成本较高;2)波动较小,体现出磨底阶段中交易冷清的特点;3)虽然波动低但最大回撤却较高。综合上面三点特征,我们不难看出高赔率+低胜率的品种要么是持续阴跌的行情,要么是短期暴跌的行情,因此参与高赔率+低胜率的机会建议投资者尽可能提高组合的分散化程度;


为了更直观地体现赔率和胜率融合分析的效果,我们在股票择时、国债择时以及资产配置三个策略上分别进行比较。从图表50-53的结果来看,基于赔率-胜率框架的策略收益风险特征均优于纯赔率/纯胜率策略。基于赔率-胜率框架构建的资产配置策略自2011年以来年化收益达6.7%,最大回撤为2.8%,卡玛比率达2.43,策略年化单边换手率为177%。


04

总结




本篇报告主要研究资产配置中的赔率和胜率的概念,核心成果有四点:

  • 策略配置的本质是提升资产夏普比率。2011年以后,A股和中债的风险溢价能力明显降低,且股债牛熊波动较大,如果不进行Beta管理,简单的风险平价策略效果一般且市场风险暴露较大。当市场无效性较强的时候,我们需要将资产配置思路转变为策略配置思路,通过策略将低夏普比率资产转化为高夏普比率资产。
  • 构建资产赔率雷达图:A股、转债、利率债。赔率是左侧信号,赚的是定价误差的钱,因此赔率偏离幅度越大,赔率均值回归的速度越快,赔率策略越容易赚钱。权益赔率指标建议使用股息率-国债收益率,可转债赔率指标建议使用CCB模型定价误差,利率债赔率指标建议使用预期收益。
  • 设计宏观胜率评分卡:货币、信用、经济、通胀和海外。胜率指标是右侧信号,赚的是基本面动量的钱,因此胜率信号的信噪比越高,胜率策略越容易赚钱。我们从货币、信用、经济、通胀和海外五个宏观维度出发,量化定义了每一个维度的方向和强度,最终通过宏观胜率评分卡合成出各资产的宏观胜率。
  • 赔率-胜率复合框架优于单一赔率/胜率框架。相比于纯赔率策略或纯胜率策略,基于赔率-胜率复合框架的股票择时、国债择时和资产配置策略均表现出更优的收益风险特征,收益更高的同时波动和最大回撤更低。


投资者如果对报告具体细节感兴趣,欢迎阅读完整报告或者跟我们联系。


风险提示:资产估值中枢发生瞬时且持续的飘移将影响赔率策略的效果。五个宏观维度与资产之间的关系发生改变、宏观指标不再能准确代理宏观维度的信息都将影响胜率策略的效果。

本文节选自国盛证券研究所于2023年10月13日发布的报告《构建大类资产的宏观胜率评分卡:货币、信用、增长、通胀与海外五因子——宏观经济量化系列之三》,具体内容请详见相关报告。

林志朋    S0680518100004    [email protected]

刘富兵    S0680518030007    [email protected] 

汪宜生    S0680123070005    [email protected]

特别声明:《证券期货投资者适当性管理办法》于2017年7月1日起正式实施。通过微信形式制作的本资料仅面向国盛证券客户中的专业投资者。请勿对本资料进行任何形式的转发。若您非国盛证券客户中的专业投资者,为保证服务质量、控制投资风险,请取消关注,请勿订阅、接受或使用本资料中的任何信息。因本订阅号难以设置访问权限,若给您造成不便,烦请谅解!感谢您给予的理解和配合。


重要声明:本订阅号是国盛证券金融工程团队设立的。本订阅号不是国盛金融工程团队研究报告的发布平台。本订阅号所载的信息仅面向专业投资机构,仅供在新媒体背景下研究观点的及时交流。本订阅号所载的信息均摘编自国盛证券研究所已经发布的研究报告或者系对已发布报告的后续解读,若因对报告的摘编而产生歧义,应以报告发布当日的完整内容为准。本资料仅代表报告发布当日的判断,相关的分析意见及推测可在不发出通知的情形下做出更改,读者参考时还须及时跟踪后续最新的研究进展。


本资料不构成对具体证券在具体价位、具体时点、具体市场表现的判断或投资建议,不能够等同于指导具体投资的操作性意见,普通的个人投资者若使用本资料,有可能会因缺乏解读服务而对报告中的关键假设、评级、目标价等内容产生理解上的歧义,进而造成投资损失。因此个人投资者还须寻求专业投资顾问的指导。本资料仅供参考之用,接收人不应单纯依靠本资料的信息而取代自身的独立判断,应自主作出投资决策并自行承担投资风险。


版权所有,未经许可禁止转载或传播。

本篇文章来源于微信公众号: 留富兵法

本文链接:https://kxbaidu.com/post/%E9%87%8F%E5%8C%96%E4%B8%93%E9%A2%98%20%7C%20%E6%9E%84%E5%BB%BA%E5%A4%A7%E7%B1%BB%E8%B5%84%E4%BA%A7%E7%9A%84%E5%AE%8F%E8%A7%82%E8%83%9C%E7%8E%87%E8%AF%84%E5%88%86%E5%8D%A1%EF%BC%9A%E8%B4%A7%E5%B8%81%E3%80%81%E4%BF%A1%E7%94%A8%E3%80%81%E5%A2%9E%E9%95%BF%E3%80%81%E9%80%9A%E8%83%80%E4%B8%8E%E6%B5%B7%E5%A4%96%E4%BA%94%E5%9B%A0%E5%AD%90.html 转载需授权!

分享到:

相关文章

【国盛量化】短调不改反弹态势

【国盛量化】短调不改反弹态势

                1.市场...

中证500增强本周超额基准0.31%

中证500增强本周超额基准0.31%

摘要 中证500增强      中证500增强以中证500为基准指数,精选基本面因子进行组合优化。    &n...

数据即将触底,市场有望重启!

重要提示:通过本订阅号发布的观点和信息仅供中信建投证券股份有限公司(下称“中信建投”)客户中符合《证券期货投资者适当性管理办法》规定的机构类专业投资者参考。因本订阅号暂时无法设置访问限制,若您并非中信...

【方正金工】华泰柏瑞央企红利ETF募超20亿元,3只央企股东回报ETF发行顺利进行——公募基金一周复盘回顾

【方正金工】华泰柏瑞央企红利ETF募超20亿元,3只央企股东回报ETF发行顺利进行——公募基金一周复盘回顾

本文来自方正证券研究所于2023年5月22日发布的报告《华泰柏瑞央企红利ETF募超20亿元,3只央企股东回报ETF发行顺利进行》,欲了解具体内容,请阅读报告原文,分析师:刘洋 S12205221000...

【底背驰再现,指标指向均衡配置】安信金工定量复盘20230723

【底背驰再现,指标指向均衡配置】安信金工定量复盘20230723

点击上方公众号可以关注哦!主要结论:底背驰再现,指标指向均衡配置上周市场在右肩构造过程中的跌幅比预期略大,但我们研发的缠论跟踪系统显示,当前有部分宽基指数出现了底背驰共振现象。在近几个月的支撑区域出现...

多指数转入上行波段,静待确定性技术信号

多指数转入上行波段,静待确定性技术信号

观点速览导读综合结论:本周(2023/11/6-2023/11/10)市场整体走势较好。展望后市,技术面指标的信号暂时以谨慎乐观为主,多指数上涨概率维持高位。以上证指数为例,该指数的短期和中期上涨概率...

发表评论    

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。